FINITE COMPLETE REWRITING SYSTEMS FOR
GROUPS

Deko V. Dekov
Zahari Knjazevski 81
6000 Stara Zagora
Bulgaria

1 Introduction

A finite complete rewriting system R for a group G gives a simple solution to the
word problem for the group G as follows: Two words are equivalent if and only if
their R-irreducible forms (often called normal forms, or canonical forms) are the
same.

In recent years, the Knuth-Bendix completion procedure has been used for cre-
ating finite complete rewriting systems for many groups and classes of groups. For
an overview see, e.g., N. Dershowitz [5].

In the present paper we give a finite complete rewriting system for the funda-
mental group of the surface $S^2 \# n T \# n R P^2$, where $g \geq 1$, $n \geq 0$ (Proposition 1), a
finite complete rewriting system for the torus knot group (Proposition 2), and new proofs
of the termination of the finite complete rewriting systems for the Greendlinger
group, due to F. Otto [16] and Ph. Le Chenadec [12] (Propositions 3 and 4).

2 Preliminaries

The reader is referred to [2] or [1] for a survey on string-rewriting systems.

Let X be a set and let X^* be the free monoid on X, the empty word of which is
denoted by I. The length of a word w in X^* is denoted by $|w|$. A rewriting system
(or a string-rewriting system) on X is a subset R of $X^* \times X^*$. An element $(l, r) \in R$,
also written $l \rightarrow r$, is called a rule of R.

Henceforth we call an irreflexive and transitive binary relation an ordering. If $>$
is an ordering, then $u \geq v$ means that either $u > v$ or $u = v$.

Let $u, v \in X^*$ and let \triangleright be a well-founded ordering on X, called a precedence on
X. Define the recursive path ordering from the left ([RPO-L, for short]) as follows:
$u \triangleright_{[RPO-L]} v$ iff $u \neq I$ and $v = I$ or $u = au'$, $v = bv'$, $a, b \in X$, $u', v' \in X^*$ and one
of the following three conditions holds:

Copyright © 1997 by Marcel Dekker, Inc.
(i) \(a \triangleright b\) and \(au' \triangleright_{RPO-L} v'\).
(ii) \(a = b\) and \(u' \triangleright_{RPO-L} v'\).
(iii) \(u' \geq_{RPO-L} bv'\).

Let \(R\) be a rewriting system on \(X\) and let \(\triangleright\) be an ordering on \(X^*\). The ordering \(\triangleright\) is called compatible with \(R\) if \(l \triangleright r\) for each rule \((l \rightarrow r) \in R\).

Given a monoid \(M\), a rewriting system \(R\) on \(X\) is called a rewriting system for \(M\) if

\[
\text{mon}(X; l = r \text{ where } (l \rightarrow r) \in R)
\]

is a presentation for \(M\). A rewriting system for a group \(G\) is a rewriting system for \(G\) as a monoid.

The terminology used in the theorems below can be found, e.g., in [3, Section 2].

Theorem A (Dershowitz [4]). The recursive path ordering from the left is a reduction ordering.

Theorem B (Lankford [11]). A rewriting system \(R\) on \(X\) is terminating if and only if there exists a reduction ordering on \(X^*\) which is compatible with \(R\).

Theorem C (Newman [14]). Let \(R\) be a terminating rewriting system. Then \(R\) is confluent if and only if all critical pairs of \(R\) are resolved.

Theorem D (Newman [14]). If \(R\) is a complete rewriting system for a group \(G\), then there exists exactly one \(R\)-irreducible word representing each element of \(G\).

A rewriting system \(R\) on \(X\) is finite if both \(X\) and \(R\) are finite sets. If \(R\) is a finite complete rewriting system for a group \(G\), then, by Theorem D, \(R\) gives a simple solution to the word problem for \(G\) as follows: two words are equivalent if and only if their \(R\)-irreducible forms are the same.

3 Surface groups

In 1986, Ph. Le Chenadec [12, Chap. 6, Section 2] (see also [13]) gave a finite complete rewriting system for the fundamental group of a closed orientable surface of genus \(g\),

\[
\Phi_g = (A_1, A_2, \ldots, A_{2g}; A_1 A_2 \ldots A_{2g} A_1^{-1} A_2^{-1} \ldots A_{2g}^{-1} = 1).
\]

In 1992, S. M. Hermiller [7] (see also [8]) gave a new finite complete rewriting system for \(\Phi_g\) based on the usual presentation

\[
\Phi_g = (a_1, \ldots, a_g, b_1, \ldots, b_g; \ a_1 b_1 a_1^{-1} b_1^{-1} \ldots a_g b_g a_g^{-1} b_g^{-1} = 1).
\]

Let \(v \in X^* - \{1\}\) and \(u \in X^*\). Define \(#(v, I) = 0\), and for \(v = x_1 x_2 \ldots x_m, u = y_1 y_2 \ldots y_n, m, n \geq 1\), define

\[
#(v, u) = \text{card} \{ (i_1, \ldots, i_m) : i_1 < i_2 < \ldots < i_m, u_{i_k} = x_k \}
\]

\[
\text{for } k = 1, 2, \ldots, m \}.
\]

E.g., \(#(ab, aab) = 1\) and \(#(ab, aabb) = 4\). Clearly, if \(a \in X\), then \(#(a, u)\) denotes the number of occurrences of the letter \(a\) in the word \(u\). We use the notation \(#(v, u)\) from U. Martin [15].
We shall use the method of S. M. Hermiller [8] to give a finite complete rewriting system for the group \(G = \langle A; aba^{-1}b^{-1}w = 1 \rangle \), where \(A \) is a finite set, \(a, b \in A \), and \(w \) is a word such that \(#(x, w) = \ell \), for \(x \in \{a, b, a^{-1}, b^{-1}\} \). The main special cases of the group \(G \) are the fundamental group \(\Phi \) of the surface \(S^2 \# q \mathbb{T} \# n \mathbb{R} P^2 \), \(q \geq 1 \), \(n \geq 0 \),

\[
\Phi = \langle a_1, \ldots, a_q, b_1, \ldots, b_q, c_1, \ldots, c_n; a_1 b_1 a_1^{-1} b_1^{-1} \ldots a_q b_q a_q^{-1} b_q^{-1} c_1^2 \ldots c_n^2 = 1 \rangle.
\]

(See C. Knesiowski [10, Theorem 26.1]), the group \(\Phi_q \), and the free abelian group on two generators, \(F' = \langle a, b; ab = ba \rangle \).

As in J. M. Howie [9, p. 104], \(C(u) \) denotes the content of the word \(u \in X^* - \{1\} \), i.e., the set of elements of \(X \) occuring in \(u \). We define \(C(1) = \emptyset \).

Define the rewriting system

\[
R(G) = \{ xx^{-1} \rightarrow 1, x^{-1}x \rightarrow 1, \text{ for all } x \in A, \]
\[
ab \rightarrow w^{-1}ba, a^{-1}b^{-1} \rightarrow b^{-1}a^{-1}w^{-1}, ab^{-1} \rightarrow b^{-1}we, a^{-1}w^{-1}b \rightarrow ba^{-1} \}.
\]

Notice that if

\[
A = \{a, a_2, \ldots, a_q, b, b_2, \ldots, b_q\} \text{ and } w = a_2 b_2 a_2^{-1} b_2^{-1} \ldots a_q b_q a_q^{-1} b_q^{-1},
\]

then \(R(G) \) coincides with the rewriting system \(R' \) due to S. M. Hermiller [8, p. 142]. The recursive path ordering from the left defined by the precedence

\[
a \triangleright a^{-1} \triangleright b \triangleright b^{-1} \triangleright \cdots \triangleright a_q \triangleright a_q^{-1} \triangleright b_q \triangleright b_q^{-1},
\]

used by Hermiller [8, p. 141] to prove the termination of \(R' \) is an extension to a total ordering of the recursive path ordering from the left, defined in the proof of Proposition 1.

Proposition 1. \(R(G) \) is a finite complete rewriting system for the group \(G \).

Proof. It is routine to verify that \(R(G) \) is a rewriting system for the group \(G \).

The rewriting system \(R(G) \) is terminating. Indeed, let \(\triangleright_{RPO-L} \) denote the recursive path ordering from the left defined by the precedence \(a \triangleright x \), for all \(x \in C(w) \), \(a \triangleright b, a \triangleright b^{-1}, a^{-1} \triangleright b, \) \(a^{-1} \triangleright b^{-1} \triangleright y \), for all \(y \in C(w^{-1}) \). Then \(\triangleright_{RPO-L} \) is compatible with the rewriting system \(R(G) \). Hence, by Theorems A and B, \(R(G) \) is terminating.

The rewriting system \(R(G) \) is confluent. Indeed, \(R(G) \) does not have any inclusion ambiguities. A straightforward verification shows that all critical pairs of \(R(G) \) arising from overlap ambiguities, are resolved. Hence, by Theorem C, \(R(G) \) is confluent.

\(R(G) \) is complete, since it is terminating and confluent. Proposition 1 is proved.

We shall define a new simple ordering which proves the termination of \(R(G) \). A similar ordering was defined by B. Benninghofen, S. Kemmerich and M. M. Richter [1, p. 21]. We use the abbreviation BKRO for the Benninghofen-Kemmerich-Richter ordering. Let \(\triangleright \) denote the usual ordering on \(\mathbb{N} \), and let \(\triangleright_{Lex-L} \) denote the lexicographic ordering from the left on 4-tuples of nonnegative integers, induced by \(\triangleright \).
Denote
\[V_a(u) = \#(a, u) + \#(a^{-1}, u), \]
\[V_b(u) = \#(b, u) + \#(b^{-1}, u), \]
\[V(u) = \#(ab, u) + \#(a^{-1}b, u) + \#(ab^{-1}, u) + \#(a^{-1}b^{-1}, u). \]

Define
\[u >_{BKRO} v \iff (V_a(u), V_b(u), V(u), |u|) >_{Lex-L} (V_a(v), V_b(v), V(v), |v|). \]

It is easy to verify that $>_BKRO$ is a reduction ordering which is compatible with $R(G)$. E.g., if $x \in A - \{a, b\}$, then $xx^{-1} >_{BKRO} I$, since
\[(0, 0, 0, 2) >_{Lex-L} (0, 0, 0, 0), \]
so
\[aa^{-1} >_{BKRO} I, \] since
\[(2, 0, 0, 2) >_{Lex-L} (0, 0, 0, 0), \]
and
\[ab^{-1} >_{BKRO} b^{-1}wa, \] since
\[(1, 1, 1, 2) >_{Lex-L} (1, 1, 0, 2 + |w|). \]

Hence, by Theorem B, $R(G)$ is terminating.

4 The torus knot group

In 1994, J. Pedersen and M. Yoder [17] gave a finite complete rewriting system for the braid group $B_3 = \langle a, b, c; a^3 = b^2 = c \rangle$. We shall use the method of Pedersen and Yoder [17] to give a finite complete rewriting system for the torus knot group $G = \langle a, b, c; a^n = b^m = c \rangle$, where $m, n > 1$. (See C. Kosniowski [10, Theorem 27.4]).

Define the rewriting system
\[R(G) = \{ c^{-1} \to 1, c^{-1}c \to 1, a^{-1} \to c^{-1}a^{-1}, b^{-1} \to c^{-1}b^{-1}, a^n \to c, b^m \to c, ac \to ca, ac^{-1} \to c^{-1}a, bc \to cb, bc^{-1} \to c^{-1}b \}. \]

Notice that if $n = 3$ and $m = 2$, then $R(G)$ coincides with the rewriting system T for B_3 due to Pedersen and Yoder [17].

Proposition 2. $R(G)$ is a finite complete rewriting system for the group G.

Proof. In order to prove the termination of $R(G)$, we use the recursive path ordering from the left defined by the precedence $a^{-1} \triangleright c \triangleright c, e \triangleright c^{-1}, b^{-1} \triangleright b \triangleright c, b \triangleright c^{-1}$. The rest of the proof is similar to the proof of Proposition 1.

5 The Greendlinger group

In 1960, M. Greendlinger [6] proved that the Dehn's algorithm cannot solve the word problem for the group $G = \langle a, b, c; abc = cba \rangle$. In 1984, F. Otto [16] gave a...
finite complete rewriting system \(R_1(G) \) for the Greendlinger group \(G \). The rewriting system \(R_1(G) \) is defined as follows:

\[
R_1(G) = \{aa^{-1} \rightarrow 1, a^{-1}a \rightarrow 1, bb^{-1} \rightarrow 1, b^{-1}b \rightarrow 1, cc^{-1} \rightarrow 1, c^{-1}c \rightarrow 1,
ac^{-1} \rightarrow b^{-1}c^{-1}ab, a^{-1}b^{-1} \rightarrow c^{-1}b^{-1}a^{-1}c, abc \rightarrow cba, a^{-1}c \rightarrow bca^{-1} \}.
\]

We shall give a new proof of the termination of \(R_1(G) \).

Proposition 3. The rewriting system \(R_1(G) \) is terminating.

Proof. Let \(>_{\text{RPO-L}} \) be the recursive path ordering from the left defined by the precedence \(a \triangleright b^{-1} \triangleright c, a \triangleright c^{-1}, a^{-1} \triangleright b^{-1} \triangleright b, a^{-1} \triangleright b^{-1} \). Then the ordering \(>_{\text{RPO-L}} \) is compatible with \(R_1(G) \). Hence, by Theorems A and B, \(R_1(G) \) is terminating. Proposition 3 is proved.

In 1986, Ph. Le Chenadec [12, Chap. 6, Section 2] gave another finite complete rewriting system \(R_2(G) \) for the Greendlinger group \(G \). The rewriting system \(R_2(G) \) is defined as follows:

\[
R_2(G) = \{aa^{-1} \rightarrow 1, a^{-1}a \rightarrow 1, bb^{-1} \rightarrow 1, b^{-1}b \rightarrow 1, cc^{-1} \rightarrow 1, c^{-1}c \rightarrow 1,
\]

\[
cba \rightarrow abc, bca^{-1} \rightarrow a^{-1}cb, b^{-1}a^{-1}c \rightarrow ca^{-1}b^{-1}, a^{-1}b^{-1}c^{-1} \rightarrow c^{-1}b^{-1}a^{-1},
\]

\[
ac^{-1}b^{-1} \rightarrow b^{-1}c^{-1}a, c^{-1}ab \rightarrow bac^{-1} \}.
\]

Notice that the four standard orderings, namely, the weight-plus-lexicographic ordering from the left, the weight-plus-lexicographic ordering from the right, the recursive path ordering from the left and the recursive path ordering from the right, are not compatible with \(R_2(G) \).

We shall give a new proof of the termination of \(R_2(G) \).

Proposition 4. The rewriting system \(R_2(G) \) is terminating.

Proof. We shall define a new simple ordering which proves the termination of \(R_2(G) \). A similar ordering was defined by U. Martin [15, Example 5]. We use the abbreviation MO for the Martin ordering. Let \(> \) denote the usual ordering on \(\mathbb{N} \) and let \(>_{\text{Lex-L}} \) denote the lexicographic ordering from the left on 7-tuples of nonnegative integers, induced by \(> \). Denote

\[
\#(ca, u) + \#(ba^{-1}, u) + \#(b^{-1}c, u) + \#(a^{-1}c^{-1}, u) + \#(ab^{-1}, u) + \#(c^{-1}b, u).
\]

by \(V(u) \). Define \(u >_{\text{MO}} v \) iff

\[
(\#(a, v), \#(b, v), \#(c, v), \#(a^{-1}, v), \#(b^{-1}, u), \#(c^{-1}, v), V(u)) >_{\text{Lex-L}} (\#(a, v), \#(b, v), \#(c, v), \#(a^{-1}, v), \#(b^{-1}, v), \#(c^{-1}, v), V(v)).
\]

It is easy to verify that \(>_{\text{MO}} \) is a reduction ordering which is compatible with \(R_2(G) \).

E.g., \(a^{-1}a >_{\text{MO}} I \), since \((1, 0, 0, 1, 0, 0, 0, 0) >_{\text{Lex-L}} (0, 0, 0, 0, 0, 0, 0) \) and \(cba >_{\text{MO}} abc \), since \((1, 1, 1, 0, 0, 0, 0, 0) >_{\text{Lex-L}} (1, 1, 1, 0, 0, 0, 0, 0) \). Hence, by Theorem B, \(R_2(G) \) is terminating. Proposition 4 is proved.

References

Received: January 1997

Revised: May 1997